Part Number Hot Search : 
A143E M65A3 2W10G 2SD1113 TC3588 82553350 2SK1549 003900
Product Description
Full Text Search
 

To Download R1131N121A5-TR-FE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  r1131x series low voltage 300ma ldo regulator no.ea-116-100203 1 outline the r1131x series are cmos-based low voltage regulat or ics with output voltage range from 0.8v to 3.3v. the minimum operating voltage is 1.4v. each of these vo ltage regulator ics consists of a voltage reference unit, an error amplifier, resistors for setting output volt age, a current limit circuit, and a chip enable circuit. to prevent the destruction by over cu rrent, current limit circuit is included. standby mode realizes ultra small consumption current. the output voltage of these ics is internally fixed with high accuracy. since the packages for these ics are sot-23-5, son-6, and hson-6, high density mounting of the ics on boards is possible. features ? supply curre nt ..................................................typ. 80 a (v out < 1.8v) typ. 60 a (v out 1.8v) ? standby mode ...................................................typ. 0.1 a ? dropout voltag e ................................................typ. 0.48v(i out = 300ma output voltage = 1.0v type) typ. 0.31v(i out = 300ma output voltage = 1.5v type) typ. 0.23v(i out = 300ma output voltage = 3.0v type) ? ripple rejectio n................................................typ. 65db(f = 1khz) ? temperature-drift coefficient of output voltage........ typ. 100ppm/ c ? line regulation .................................................typ. 0.01%/v ? output voltage accuracy................................... 2.0% ? output voltage range.......................................0.8v to 3.3v (0.1v steps) ( for other voltages, please refer to mark informations.) ? input voltage range .........................................1.4v to 6.0v ? packages .........................................................sot-23-5 , son-6, hson-6 ? built-in fold-back protection circuit ....................typ. 50ma (current at short mode) ? external capacitors...........................................c in = c out = tantalum 1.0 f (v out < 1 . 0v) c in = c out = ceramic 1.0 f (v out 1.0v) applications ? precision voltage references. ? power source for electrical appliances such as cameras, vcrs and hand-held communication equipment. ? power source for battery-powered equipment.
r1131x 2 block diagram r1131xxxxa r1131xxxxb v dd v out ce gnd current limit vref v dd v out ce gnd current limit vref r1131xxxxd v dd v out ce gnd current limit vref selection guide the output voltage, ce pin polarity, auto discharge functi on, package, etc. for the ic s can be selected at the user?s request. product name package quantity per reel pb free halogen free r1131nxx1 ? -tr-fe sot-23-5 3,000 pcs yes yes r1131dxx1 ? -tr-fe son-6 3,000 pcs yes yes r1131dxx2 ? -tr-fe hson-6 3,000 pcs yes yes xx : the output voltage can be designated in the rang e from 0.8v(08) to 3.3v(33) in 0.1v steps. (for other voltages, please refer to mark informations.) ? : ce pin polarity and auto discharge functi on at off state are options as follows. (a) "l" active, without auto discharge function at off state (b) "h" active, without aut o discharge function at off state (d) "h" active, with auto discharge function at off state
r1131x 3 pin configurations z sot-23-5 z son-6 z hson-6 1 2 3 4 5 (mark side) top view bottom view 6 5 4 4 5 6 1 2 3 3 2 1 ? ? top view bottom view 654 ? ? ? pin descriptions ? sot-23-5 pin no symbol pin description 1 v dd input pin 2 gnd ground pin 3 ce or ce chip enable pin 4 nc no connection 5 v out output pin ? son-6, hson-6 pin no symbol pin description 1 v dd input pin 2 nc no connection 3 v out output pin 4 nc no connection 5 gnd ground pin 6 ce or ce chip enable pin ?) tab and tab suspension leads are gnd level. (they are connected to the reverse side of this ic.) the tab is better to be connected to the gn d, but leaving it open is also acceptable. the tab suspension leads do not be connect to other wires or land patterns.
r1131x 4 absolute maximum ratings symbol item rating unit v in input voltage 6.5 v v ce input voltage( ce /ce pin) ? 0.3 to 6.5 v v out output voltage ? 0.3 to v in + 0.3 v i out output current 350 ma power dissipation (sot-23-5) ? 420 power dissipation (son-6) ? 500 p d power dissipation (hson-6) ? 900 mw topt operating temperature range ? 40 to 85 c tstg storage temperature range ? 55 to 125 c ? ) for power dissipation please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safe ty for both device and sy stem using the device in the field. the functional operation at or over these absolute maximum ratings is not assured.
r1131x 5 electrical characteristics ? r1131xxxxa topt = 25 c symbol item conditions min. typ. max. unit v out >1.5v 0.98 1.02 v v out output voltage v in = ? set v out + 1v 1 a i out 30ma v out 1.5v ? 30 + 30 mv i out output current v in ? v out = 1.0v 300 ma v out / i out load regulation v in = set v out + 1v, 1ma i out 300ma 40 70 mv v out = 0.8v 620 850 v out = 0.9v 550 780 1.0v v out < 1.5v 480 700 1.5v v out < 2.6v 310 450 v dif dropout voltage i out = 300ma 2.6v v out 3.3v 230 350 mv v in = set v out + 1v, v out < 1.8v 80 111 a i ss1 supply current v in = set v out + 1v, v out 1.8v 60 90 a i standby standby current v in = v ce = set v out + 1v 0.1 1.0 a v out / v in line regulation i out = 30ma v out + 0.5v v in 6.0v (v out > 0.9v) 1.4v v in 6.0v (v out 0.9v) 0.01 0.15 %/v rr ripple rejection f = 1khz, ripple 0.2vp-p v in = set v out + 1v, i out = 30ma 65 db v in input voltage 1.4 6.0 v v out / t opt output voltage temperature coefficient i out = 30ma ? 40 c t opt 85 c 100 ppm / c i sc short current limit v out = 0v 50 ma r pu ce pull-up resistance 1.87 5.0 12.0 m v ceh ce input voltage ?h? 1.0 6.0 v v cel ce input voltage ?l? 0 0.3 v en output noise bw = 10hz to 100khz 30 vrms recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions.
r1131x 6 ? r1131xxxxb/d topt = 25 c symbol item conditions min. typ. max. unit v out >1.5v 0.98 1.02 v v out output voltage v in = set v out + 1v 1 a i out 30ma v out 1.5v ? 30 + 30 mv i out output current v in ? v out = 1.0v 300 ma v out / i out load regulation v in = set v out + 1v 1ma i out 300ma 40 70 mv v out = 0.8v 620 850 v out = 0.9v 550 780 1.0v v out < 1.5v 480 700 1.5v v out < 2.6v 310 450 v dif dropout voltage i out = 300ma 2.6v v out 3.3v 230 350 mv v in = set v out + 1v, v out < 1.8v 80 111 a i ss1 supply current v in = set v out + 1v, v out 1.8v 60 90 a i standby standby current v in = set v out + 1v, v ce = gnd 0.1 1.0 a v out / v in line regulation i out = 30ma v out + 0.5v v in 6.0v(v out > 0.9v) 1.4v v in 6.0v(v out 0.9v) 0.01 0.15 %/v rr ripple rejection f = 1khz, ripple 0.2vp-p v in = set v out + 1v, i out = 30ma 65 db v in input voltage 1.4 6.0 v v out / t opt output voltage temperature coefficient i out = 30ma ? 40 c t opt 85 c 100 ppm / c i sc short current limit v out = 0v 50 ma r pd ce pull-down resistance 1.87 5.0 12.0 m v ceh ce input voltage ?h? 1.0 6.0 v v cel ce input voltage ?l? 0 0.3 v en output noise bw = 10hz to 100khz 30 vrms r low nch on resistance for auto discharge (d version only) v ce = 0v 60 recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions.
r1131x 7 typical application v dd gnd out out r1131x series c2 c1 in out out ce ? c2 1.0 f cm05x5r105k06ab (kyocera) c2 1.0 f c1005jboj105k (tdk) c2 1.0 f grm155b30j105ke18b (murata) output capacitor; 1.0 f or more capacity ceramic type (if v out < 1.0v, tantalum type is recommended) input capacitor, 1.0 f or more capacity ceramic type technical notes when using these ics, consider the following points: phase compensation in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, be sure to use a 1.0 f or more capacitor c out with good frequency characteristics and esr (equivalent series resistance). (note: if a tantalum capacitor is connected to the output pin for phase compensation, if the esr value of the capacitor is too large, the operation mi ght be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) chip capacitor characteristics of bias dependence an d temperature characteristics may vary depending on its size, manufacturer, and part number. pcb layout make v dd and gnd lines sufficient. if their impedance is high, pick-up the noise or unstable operation may result. connect a capacitor with as much as 1.0 f capacitor between v dd and gnd pin as close as possible. set external components, especially t he output capacitor, as close as possi ble to the ics, and make wiring as short as possible.
r1131x 8 test circuit ? c1 = c2 = tantalum1.0 = c2 = ceramic1.0 f (v out > = 1.0v) gnd c1 c2 v i out v out ce ? ce r1131x series v dd out gnd r1131x series c1 c2 a out i ss ce ? ce ? = = = c2 = ceramic1.0 f (v out > = 1.0v) v dd out standard test circuit supply current test circuit generator gnd r1131x series c2 p. g i out pulse ? c2 = tantalum1.0 = ceramic1.0 f (v out > = 1.0v) ce ? ce v dd out gnd r1131x series c2 ? = = = c2 = ceramic1.0 f (v out > = 1.0v) ce ? ripple rejection, line transient respons e load transient response test circuit test circuit pulse generator 0 v set v out +1.0v ? r1131x series c1 c2 i out ce ? ce ? c1 = c2 = tantalum1.0 = c2 = ceramic1.0 f (v out > = 1.0v) v dd out turn on speed with ce pin test circuit
r1131x 9 typical characteristics 1) output voltage vs. output current r1131x08xx r1131x15xx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 100 200 300 400 500 600 output current l out (ma) output voltage v out (v) 1.45v v in =2.8v 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 100 200 300 400 500 600 output current l out (ma) output voltage v out (v) 2.0v v in =1.8v 3.5v 2.5v r1131x26xx r1131x33xx 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 output current l out (ma) output voltage v out (v) 4.6v v in =2.9v 3.6v 3.1v 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 output current l out (ma) output voltage v out (v) 3.8v v in =3.6v 5.3v 4.3v 2) output voltage vs. input voltage r1131x08xx r1131x15xx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0123456 output voltage v out (v) i out = 1ma i out =30ma i out =50ma input voltage v in (v) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0123456 i out = 1ma i out =30ma i out =50ma output voltage v out (v) input voltage v in (v)
r1131x 10 r1131x26xx r1131x33xx 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0123456 i out = 1ma i out =30ma i out =50ma output voltage v out (v) input voltage v in (v) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0123456 input voltage v in (v) i out = 1ma i out =30ma i out =50ma output voltage v out (v) 3) supply current vs. input voltage r1131x08xx r1131x15xx 0 10 20 30 40 50 60 70 80 90 100 0123456 input voltage v in (v) supply current i ss ( a) 0 10 20 30 40 50 60 70 80 90 0123456 supply current i ss ( a) input voltage v in (v) r1131x26xx r1131x33xx 0 10 20 30 40 50 60 70 80 90 0123456 input voltage v in (v) supply current i ss ( a) 0 10 20 30 40 50 60 70 80 90 0123456 input voltage v in (v) supply current i ss ( a)
r1131x 11 4) output voltage vs. temperature r1131x08xx r1131x15xx 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 -40 -25 0 25 50 75 85 output voltage v out (v) temperature topt( c) 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 -40 -25 0 25 50 75 85 output voltage v out (v) temperature topt( c) r1131x26xx r1131x33xx 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 -40 -25 0 25 50 75 85 output voltage v out (v) temperature topt( c) 3.23 3.25 3.27 3.29 3.31 3.33 3.35 3.37 -40 -25 0 25 50 75 85 output voltage v out (v) temperature topt( c) 5) supply current vs. temperature r1131x08xx r1131x15xx 0 10 20 30 40 50 70 110 90 60 100 80 -40 -25 0 25 50 75 85 supply current i ss ( a) temperature topt( c) 0 10 20 30 40 50 60 80 70 -40 -25 0 25 50 75 85 supply current i ss ( a) temperature topt( c)
r1131x 12 r1131x26xx r1131x33xx 0 10 20 30 40 50 60 80 70 -40 -25 0 25 50 75 85 supply current i ss ( a) temperature topt( c) 0 10 20 30 40 50 60 80 70 -40 -25 0 25 50 75 85 supply current i ss ( a) temperature topt( c) 6) dropout voltage vs. output current r1131x08xx r1131x09xx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c r1131x10xx r1131x15xx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c
r1131x 13 r1131x26xx r1131x33xx 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 50 100 150 200 250 300 dropout voltage v dif (v) output current i out (ma) 85 c 25 c -40 c 7) dropout voltage vs. set output voltage (topt = 25 c) r1131xxx1x 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.5 1 1.5 2 2.5 3 3.5 i out =10ma 50ma 200ma 30ma 100ma 300ma dropout voltage v dif (v) set output voltage v reg (v) 8) ripple rejection vs. input bias (topt = 25 c c in = none, c out = ceramic 1.0 f ripple 0.2v p-p ) r1131x26xx (i out = 1ma) r1131x26xx (i out = 30ma) 0 10 20 30 40 50 60 70 80 2.6 2.7 2.8 2.9 3.0 3.1 3.2 input voltage v in (v) ripple rejection rr(db) f = 400hz f = 10khz f = 1khz f = 100khz 0 10 20 30 40 50 60 70 80 2.6 2.7 2.8 2.9 3.0 3.1 3.2 f = 400hz f = 10khz f = 1khz f = 100khz input voltage v in (v) ripple rejection rr(db)
r1131x 14 r1131x26xx (i out = 50ma) 0 10 20 30 40 50 60 70 80 2.6 2.7 2.8 2.9 3.0 3.1 3.2 f = 400hz f = 10khz f = 1khz f = 100khz input voltage v in (v) ripple rejection rr(db) 9) ripple rejection vs. frequency (c in = none) r1131x08xx r1131x08xx 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) i out = 1ma i out = 30ma i out = 50ma v in =1.8v dc +0.2vp-p, c out =tantalum 1.0 f 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =1.8v dc +0.2vp-p, c out =tantalum 2.2 f r1131x10xx r1131x10xx 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =2.0v dc +0.2vp-p, c out =ceramic 1.0 f 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =2.0v dc +0.2vp-p, c out =ceramic 2.2 f
r1131x 15 r1131x15xx r1131x15xx 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =2.5v dc +0.2vp-p, c out =ceramic 1.0 f 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =2.5v dc +0.2vp-p, c out =ceramic 2.2 f r1131x26xx r1131x26xx 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =3.6v dc +0.2vp-p, c out =ceramic 1.0 f 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =3.6v dc +0.2vp-p, c out =ceramic 2.2 f r1131x33xx r1131x33xx 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =4.3v dc +0.2vp-p, c out =ceramic 1.0 f 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 i out = 1ma i out = 30ma i out = 50ma frequency f(khz) ripple rejection rr(db) v in =4.3v dc +0.2vp-p, c out =ceramic 2.2 f
r1131x 16 10) input transient response (c in = none, tr = tf = 5 s) r1131x08xx r1131x10x 0.76 0.78 0.80 0.82 1 2 3 4 01020406080100 30 50 70 90 time t( s) output voltage v out (v) input voltage v in (v) input voltage output voltage i out =30ma, c out =tantalum 1.0 f 0.96 0.98 1.00 1.02 1 2 3 4 01020406080100 30 50 70 90 input voltage v in (v) time t( s) output voltage v out (v) input voltage output voltage i out =30ma, c out =ceramic 1.0 f r1131x26xx 2.56 2.58 2.60 2.62 3 4 5 01020406080100 30 50 70 90 time t( s) output voltage v out (v) input voltage v in (v) input voltage output voltage i out =30ma, c out =ceramic 1.0 f 11) load transient response (tr = tf = 0.5 s) r1131x08xx r1131x08xx 0.6 0.7 0.8 0.9 0 50 100 150 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f 0.6 0.7 0.8 0.9 0 30 60 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 2.2 f
r1131x 17 r1131x10xx r1131x10xx 0.8 0.9 1.0 1.1 0 50 100 150 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =2.0v c in =ceramic 1.0 f, c out =ceramic 1.0 f 0.8 0.9 1.0 1.1 0 50 100 150 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =2.0v c in =ceramic 1.0 f, c out =ceramic 2.2 f r1131x10xx r1131x10xx 0.8 0.9 1.0 1.1 0 30 60 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =2.0v c in =ceramic 1.0 f, c out =ceramic 1.0 f 0.8 0.9 1.0 1.1 0 30 60 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =2.0v c in =ceramic 1.0 f, c out =ceramic 2.2 f r1131x26xx r1131x26xx 2.4 2.5 2.6 2.7 0 50 100 150 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =3.6v c in =ceramic 1.0 f, c out =ceramic 1.0 f 2.4 2.5 2.6 2.7 0 50 100 150 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =3.6v c in =ceramic 1.0 f, c out =ceramic 2.2 f
r1131x 18 r1131x26xx r1131x26xx 2.4 2.5 2.6 2.7 0 30 60 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =3.6v c in =ceramic 1.0 f, c out =ceramic 1.0 f 2.4 2.5 2.6 2.7 0 30 60 0 5 10 20 30 40 15 25 35 time t( s) output voltage v out (v) output current i out (ma) output current output voltage v in =3.6v c in =ceramic 1.0 f, c out =ceramic 2.2 f 12) turn on speed with ce pin r1131x08xx r1131x08xx 0 0.9 1.8 2.7 0 0.5 1.0 10 30 50 70 0204060 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 1.8v i out =0ma output voltage ce input voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f 0 0.9 1.8 2.7 0 0.5 1.0 10 30 50 70 0204060 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 1.8v output voltage ce input voltage i out =30ma v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f r1131x08xx r1131x33xx 0 0.9 1.8 2.7 0 0.5 1.0 10 30 50 70 0 204060 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 1.8v i out =300ma output voltage ce input voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f 0 4 2 6 0 1 2 4 3 20 60 100 140 0 40 80 120 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 4.3v i out =0ma output voltage ce input voltage v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f
r1131x 19 r1131x33xx (eco = h) r1131x33xx (eco = l) 0 4 2 6 0 1 2 4 3 20 60 100 140 0 40 80 120 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 4.3v i out =30ma v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f output voltage ce input voltage 0 4 2 6 0 1 2 4 3 20 60 100 140 0 40 80 120 time t( s) ce input voltage v ce (v) output voltage v out (v) 0v 4.3v i out =300ma v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f output voltage ce input voltage 13) turn-off speed with ce r1131x08xd r1131x08xd 0 1.2 2.4 0.6 1.8 0 0.5 1.0 0.2 0.6 1.0 0 0.4 0.8 1.2 time t(ms) ce input voltage v ce (v) output voltage v out (v) 1.8v 0v i out =0ma output voltage ce input voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f 0 1.2 2.4 0.6 1.8 0 0.5 1.0 0.2 0.6 1.0 0 0.4 0.8 1.2 time t(ms) ce input voltage v ce (v) output voltage v out (v) 1.8v 0v i out =30ma output voltage ce input voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f r1131x08xd r1131x33xd 0 1.2 2.4 0.6 1.8 0 0.5 1.0 0.2 0.6 1.0 0 0.4 0.8 1.2 time t(ms) ce input voltage v ce (v) output voltage v out (v) 1.8v 0v i out =300ma output voltage ce input voltage v in =1.8v c in =tantalum 1.0 f, c out =tantalum 1.0 f 1 4 3 5 0 2 0 1 2 3 4 0.1 0.3 0.5 0.7 0 0.2 0.4 0.6 time t(ms) ce input voltage v ce (v) output voltage v out (v) 4.3v 0v i out =0ma v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f output voltage ce input voltage
r1131x 20 r1131x33xd r1131x33xd 1 4 3 5 0 1 2 3 0 2 4 0.1 0.3 0.5 0.7 0 0.2 0.4 0.6 time t(ms) ce input voltage v ce (v) output voltage v out (v) 4.3v 0v i out =30ma output voltage ce input voltage v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f 1 4 3 5 0 1 2 3 0 2 4 0.1 0.3 0.5 0.7 0 0.2 0.4 0.6 time t(ms) ce input voltage v ce (v) output voltage v out (v) 4.3v 0v i out =300ma output voltage ce input voltage v in =4.3v c in =ceramic 1.0 f, c out =ceramic 1.0 f
r1131x 21 esr vs. output current when using these ics, consider the following points: in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, be sure to use a capacitor c out with good frequency characteristics and esr (equivalent series resistance) of which is in the range described as follows: the relations between i out (output current) and esr of output capacitor are shown below. the conditions when the white noise level is under 40 v(avg.) are marked as the hatched area in the graph. (1) frequency band: 10hz to 2mhz (2) temperature: 25 c r1131x08xx r1131x10xx 0.01 0.1 1 10 100 0 50 100 150 200 250 300 output current l out (ma) esr ( ) v in =1.4v to 6.0v, c in = ceramic 1.0v f c out = ceramic 1.0 f 0.01 0.1 1 10 100 0 50 100 150 200 250 300 output current l out (ma) esr ( ) v in =1.4v to 6.0v, c in = ceramic 1.0v f c out = ceramic 1.0 f r1131x26xx r1131x15xx 0.01 0.1 1 10 100 0 50 100 150 200 250 300 output current l out (ma) esr ( ) v in =3.0v to 6.0v, c in = ceramic 1.0v f c out = ceramic 1.0 f 0.01 0.1 1 10 100 0 50 100 150 200 250 300 output current l out (ma) esr ( ) v in =2.0v to 6.0v, c in = ceramic 1.0v f c out = ceramic 1.0 f
r1131x 22 r1131x33xx 0.01 0.1 1 10 100 0 50 100 150 200 250 300 output current l out (ma) esr ( ) v in =3.6v to 6.0v, c in = ceramic 1.0v f c out = ceramic 1.0 f
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of R1131N121A5-TR-FE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X